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LETTER TO THE EDITOR 

A general integral of the axially symmetric stationary 
Einstein equations 

G Neugebauer 
Sektion Physik der Friedrich-Schiller-Universitat, DDR-69 Jena, Max-Wien-Platz 1, 
DDR 

Received 23 October 1979 

Abstract. The Ernst function of an axially symmetric stationary asymptotically flat space- 
time involving an arbitrary harmonic function and an arbitrary number of constants is 
presented and discussed. 

As is well known, the metric of a stationary axially symmetric Einstein field can be 
calculated by simple mathematical operations from a solutionf(z, Z),  W(z ,  2 )  ( W = W) 
of the Ernst equations 

(Wf,~),z+(Wf,z),~ =4W(f+f)-'f,~f,z W , z , z  = 0 (1) 
where a bar denotes complex conjugation. For W =constant these equations are 
equivalent to a sinh-Gordon equation and are not connected with gravitational fields. 
Nevertheless the algebraic method for solving the sinh-(sine-)Gordon equation by 
repeated Backlund transformations has stimulated the search for a similar procedure 
applicable to the Ernst equations. Such a method was found (Neugebauer 1979) and 
transformed into a recursion formula (Neugebauer 1980) which, working as a non- 
linear creation operator, generates from a given solution f o ,  WO of (1) new solutions 
with any number of constants. The only analytic work to be done is to solve the total 
Riccati equations (Neugebauer 1979) 

d r  = W,' (7 - l ) ( ~ W o , ~  dz + Wo.2 dT) 

+ (fo + fo)-'([~y - ~ - ' / ~ ] f o , i  + [ C U ~ Y - ' ' ~  - ~t]fo,i) dT 

( 2 )  

(3) 

d a  = (fo+f")-'([a - y1/2]fo,z + [ l "y ' / '  - c ~ ] f o , ~ )  dz 

which are completely integrable if fo, WO are given solutions of (1). The functions 
a ( z ,  2 )  and y (z ,  2 )  have to satisfy the conditions 

6 =a-' j j  = (4) 
From a and y (or quantities derived from a and y )  the new solutions of (1) can be 
calculated algebraically. In this Letter we present an (asymptotically flat) solution 
involving an arbitrary number of integration constants, which is a result of an arbitrary 
number of recursion steps (Backlund transformations). In this regard it should be noted 
that Belinsky and Zakharov (1979), Cosgrove (1979), Herlt (1978), Hoenselaers et a1 
(1979) and Kinnersley and Chitre (1978) have also used systematic methods for solving 
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the Ernst equations (or equations equivalent to the Ernst equations) and have obtained 
many interesting results. Our solution can be shown to be given by 

where Cik, bik are (2N + 1) x (2N + 1 )  matrices (N  a positive integer) defined in the 
following way: 

C(i+2)m = Cim COm = 1 C l m  = f f m  for m = 0 , 1 , 2 , .  . .  ,2N 

1 f o r m = O  
bom = 1 b l m = { a m  f o r m = l , 2  

2N. 
b( l+2)m = bim . . . . .  
Furthermore we have to choose 

yo= 1, ffo = f o l f o .  (7) 
The functions Yk and f f k  are solutions of the Riccati equations ( 2 )  and ( 3 )  with different 
integration constants indicated by the index k. 

The general solution of = 0 can always be transformed into the form 
- 2(z  -k 2 ) .  Then p = Re z ,  f = Im z become cylindrical coordinates and the w -1 

functions Yk are given by 

a k  -iF 
a k  +iz  

yo= 1 Y k  =- (k = 1 , 2 , .  . .  , 2 N )  Uk=L?k ( 8 )  

where {ak}(k = 1, 2,  . . .  , 2 N )  is a countable set of real integration constants. The static 
Weyl class is an important particular case, in which the functions f f k  can be calculated 
explicitly. In addition to (5) let us give a more detailed form to the Ernst function f: 

1 

f f 0  

1 

f f0  

. . .  
1 

f 

1 1 . . .  1 f o  

. . .  . . .  . . .  . . .  
. . .  

where i = 2N. 

(9) 

The special case N = 2 of  the solution (5) (or (9)) has been discussed by Kramer and 
Neugebauer (1979). The following interpretations generalise the results obtained for 
N = 2 .  

If fo corresponds to an asymptotically flat space-time, the functions f f k  can be 
chosen in such a way that the space-time connected with f is also asymptotically flat. In 
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this case the solution f describes a nonlinear superposition of the given solution fO and N 
Kerr-NUT solutions. It should be noted that NUT-like singularities (angular momentum 
monopoles) of f  can be removed by means of an Ehlers transformation. 

Now let us specify the functions fO, WO. We first consider the flat space-time 
solution fO = 1, WO=4(z + f ) .  The functions Yk are given by (8). By using (3) it can 
readily be verified that the functions f f k  are constants. A particular choice for these 
constants leads to 

f f o = - l  f f k  = (-1) e x p [ i ( - ~ ) ~ ( ~ ~ ]  (Pzk  =(Pzk-i(k = 1, 2, . . . , N )  (10) 
and this describes the superposition of N Kerr particles, where the differences ( a 2 k  - 
@ - I )  ( k  = 1 , 2 , .  . . , N )  are proportional to the masses mk ( k  = 1, 2 , .  . . , N )  of the 
individual particles and the real constants (P2k (k = 1, 2, . . . , N )  are the rotation 
parameters for these particles. In order to obtain the superposition of N Schwarzschild 
particles we put (Pk = O ( k  = 1 , 2 , .  . . , 2N). In this case the determinants are of the 
Vandermonde type and can therefore be factorised. If the given solution belongs to the 
static Weyl classf,, = rO = eZu, WO = ;(z + i), the coordinate dependence of the functions 
f f k  is found from (4), (7) and (3) to be 

k t l  

- 
f f k  = l k  = lk =constant ( k = 0 , 1 ,  . . . ,  2 N )  (11) 

( d o  = U ) ,  where {k} is a countable set of real integration constants. The function d ( z ,  i) 
is a line integral over derivatives of the axisymmetric harmonic function U = 4 Info, 

(12) 
It does not depend on the path of integration. By a particular choice of the constants lk 
it is always possible to satisfy the requirement that for d k  = 0 the functions f f k  

( k  =0,  1 , .  . . , 2N)  in (11) should agree with the flat space f f k  in (10). This solution 
corresponds to an asymptotically flat space-time involving a harmonic function and N 
mass and angular momentum parameters. 

ddk =(Yk)1’2U,z dz +(Yk)-’”U,i d i .  

The author wishes to acknowledge his gratitude to Dr D Kramer for many helpful and 
stimulating discussions. He is also indebted to his colleagues Drs Herlt and Rudat for 
many valuable discussions. 
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